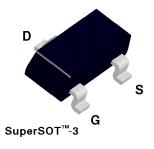
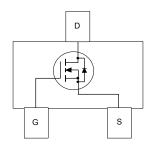


ON Semiconductor®

NDS331N


N-Channel Logic Level Enhancement Mode Field Effect Transistor


General Description

These N-Channel logic level enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize onstate resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- 1.3 A, 20 V. $R_{DS(ON)} = 0.21 \Omega$ @ $V_{GS} = 2.7 V$ $R_{DS(ON)} = 0.16 \Omega$ @ $V_{GS} = 4.5 V$.
- Industry standard outline SOT-23 surface mount package using poprietary SuperSOTTM-3 design for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDS331N	Units
V _{DSS}	Drain-Source Voltage		20	V
V _{GSS}	Gate-Source Voltage - Continuous		8	V
I _D	Maximum Drain Current - Continuous	(Note 1a)	1.3	А
	- Pulsed		10	
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T_J, T_{STG}	Operating and Storage Temperature Rang	е	-55 to 150	°C
THERMA	L CHARACTERISTICS			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS	<u>.</u>					•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 16 V, V _{GS} = 0 V				1	μΑ
			T _J =125°C			10	μΑ
I _{GSSF}	Gate - Body Leakage, Forward	V _{GS} = 8 V, V _{DS} = 0 V				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	V _{GS} = -8 V, V _{DS} = 0 V				-100	nA
ON CHAR	ACTERISTICS (Note 2)	<u>.</u>					•
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		0.5	0.7	1	V
			T _J =125°C	0.3	0.53	0.8	1
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 2.7 \text{ V}, I_{D} = 1.3 \text{ A}$	•		0.15	0.21	Ω
			T _J =125°C		0.24	0.4	
		V _{GS} = 4.5 V, I _D = 1.5 A	•		0.11	0.16	
I _{D(ON)}	On-State Drain Current	V _{GS} = 2.7 V, V _{DS} = 5 V		3			Α
		$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$		4			1
g _{FS}	Forward Transconductance	$V_{DS} = 5 \text{ V}, I_{D} = 1.3 \text{ A},$			3.5		S
DYNAMIC	CHARACTERISTICS	·					
C _{iss}	Input Capacitance	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz			162		pF
C _{oss}	Output Capacitance				85		pF
C _{rss}	Reverse Transfer Capacitance				28		pF
SWITCHI	NG CHARACTERISTICS (Note 2)						
t _{D(on)}	Turn - On Delay Time	$V_{DD} = 5 \text{ V}, I_{D} = 1 \text{ A},$ $V_{GS} = 5 \text{ V}, R_{Gen} = 6 \Omega$			5	20	ns
t,	Turn - On Rise Time				25	40	ns
t _{D(off)}	Turn - Off Delay Time				10	20	ns
t _f	Turn - Off Fall Time				5	20	ns
Q_g	Total Gate Charge	$V_{DS} = 5 \text{ V}, I_{D} = 1.3 \text{ A},$			3.5	5	nC
$\overline{Q_{gs}}$	Gate-Source Charge	V _{GS} = 4.5 V			0.3		nC
Q_{gd}	Gate-Drain Charge				1		nC

Electrical Characteristics (T _A = 25°C unless otherwise noted)									
Symbol	Parameter	Conditions	Min	Тур	Max	Units			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
Is	Maximum Continuous Drain-Source Diode Forward Current				0.42	Α			
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				10	Α			
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 0.42 \text{ A (Note 2)}$		0.8	1.2	V			

Notes:

1. R_{gax} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{gac} is guaranteed by design while R_{gcA} is determined by the user's board design.

$$P_D(t) = \frac{T_J - T_A}{R_{\theta J} \, \hat{A}(t)} = \frac{T_J - T_A}{R_{\theta J} \, \hat{c}^{\dagger} R_{\theta C} \hat{A}^{\dagger} t} = I_D^2(t) \times R_{DS(ON)} \hat{\mathbf{g}}_{TJ}$$

Typical $R_{_{\theta^{J\!A}}}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

- a. 250°C/W when mounted on a 0.02 in² pad of 2oz copper.
- b. 270°C/W when mounted on a 0.001 in² pad of 2oz copper.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

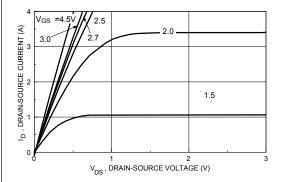


Figure 1. On-Region Characteristics.

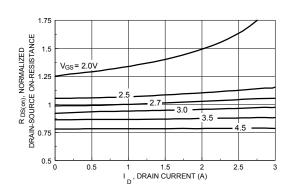


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

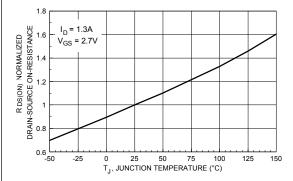


Figure 3. On-Resistance Variation with Temperature.

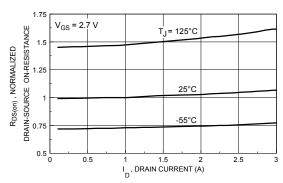


Figure 4. On-Resistance Variation with Drain Current and Temperature.

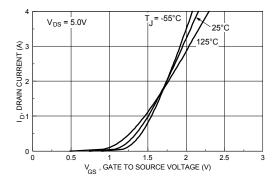


Figure 5. Transfer Characteristics.

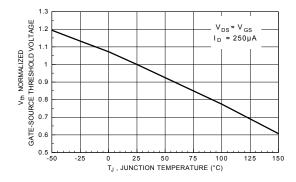


Figure 6. Gate Threshold Variation with Temperature.

Typical Electrical Characteristics (continued)

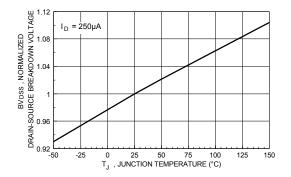


Figure 7. Breakdown Voltage Variation with Temperature.

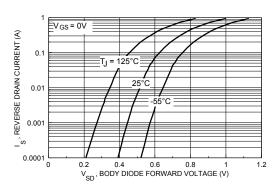


Figure 8. Body Diode Forward Voltage Variation with Source Current and Temperature.

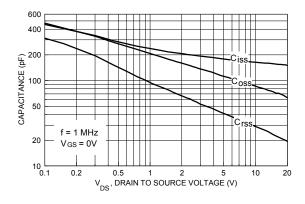


Figure 9. Capacitance Characteristics.

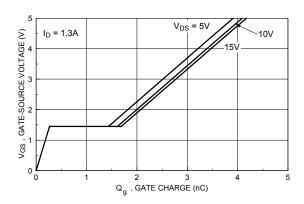


Figure 10. Gate Charge Characteristics.

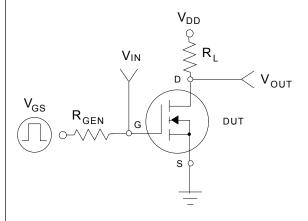


Figure 11. Switching Test Circuit.

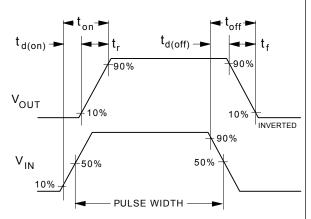


Figure 12. Switching Waveforms.

Typical Electrical Characteristics (continued)

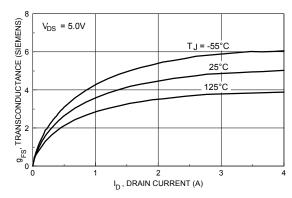


Figure 13. Transconductance Variation with Drain Current and Temperature.

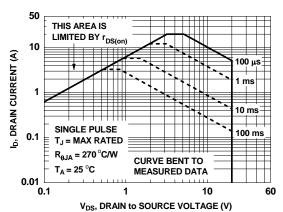
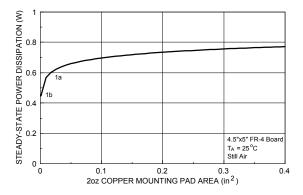



Figure 14. Maximum Safe Operating Area.

Figue 15. SuperSOT[™]- 3 Maximum Steady-State Power Dissipation. versus Copper Mounting Pad Area.

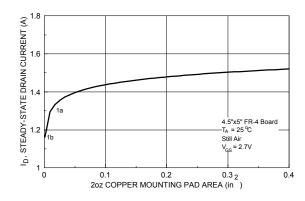


Figure 16. Maximum Steady-State Drain Current versus Copper Mounting Pad. Area

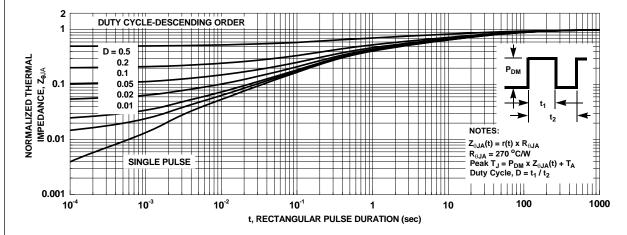


Figure 17. Transient Thermal Response Curve.

Note: Thermal characterization performed using the conditions described in note 1b. response will change depending on the circuit board design.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: NDS331N