Switch-mode Power Rectifier

MBR2045CTG, MBRF2045CTG

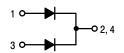
Features and Benefits

- Low Forward Voltage
- Low Power Loss / High Efficiency
- High Surge Capacity
- 175°C Operating Junction Temperature
- 20 A Total (10 A Per Diode Leg)
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Supply Output Rectification
- Power Management
- Instrumentation

Mechanical Characteristics


- Case: Epoxy, Molded
- Epoxy Meets UL 94, V-0 @ 0.125 in
- Weight: 1.9 Grams (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- ESD Rating: Human Body Model = 3B Machine Model = C

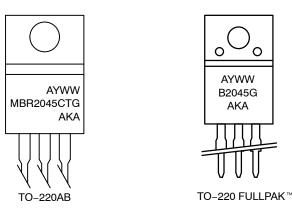
ON Semiconductor®

www.onsemi.com

SCHOTTKY BARRIER RECTIFIER 20 AMPERES, 45 VOLTS

STYLE 6

1


TO-220 FULLPAK™ CASE 221D

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 2 of this data sheet.

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

= Assembly Location

= Year WW = Work Week = Pb-Free Package G **AKA** = Diode Polarity

Figure 1. Marking Diagrams

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	45	V
Average Rectified Forward Current Per Device Per Diode (T _C = 165°C)	I _{F(AV)}	20 10	А
Peak Repetitive Forward Current per Diode Leg (Square Wave, 20 kHz, T _C = 163°C)	I _{FRM}	20	Α
Non-Repetitive Peak Surge Current (Surge Applied at Rated Load Conditions Halfwave, Single Phase, 60 Hz)	I _{FSM}	150	Α
Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 13	I _{RRM}	1.0	Α
Storage Temperature Range	T _{stg}	-65 to +175	°C
Operating Junction Temperature (Note 1)	TJ	-65 to +175	°C
Voltage Rate of Change (Rated V _R)	dv/dt	10,000	V/μs

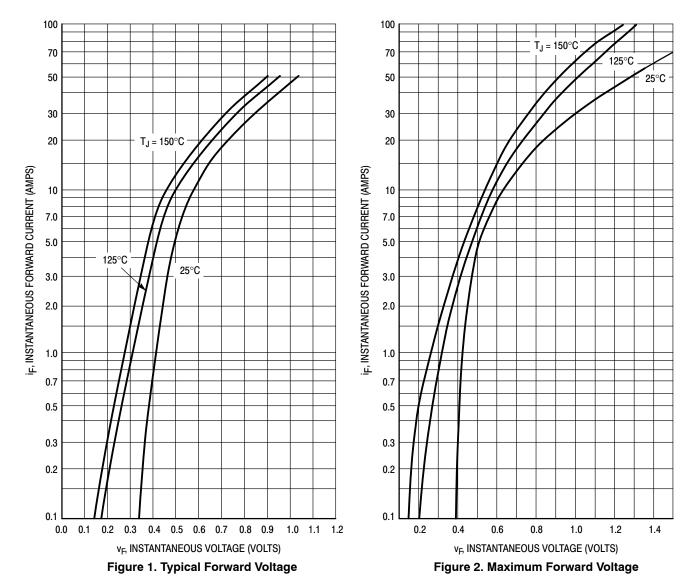
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

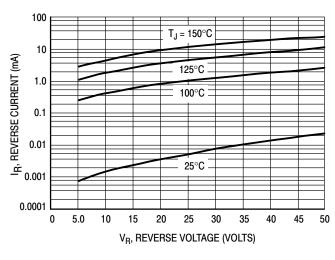
1. The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

THERMAL CHARACTERISTICS

Cha	Symbol	Value	Unit	
Maximum Thermal Resistance (MBR2045CTG) (MBRF2045CTG)	Junction-to-CaseJunction-to-AmbientJunction-to-CaseJunction-to-Ambient	$egin{array}{l} R_{ hetaJC} \ R_{ hetaJC} \ R_{ hetaJC} \end{array}$	2.0 60 4.75 75	°C/W

ELECTRICAL CHARACTERISTICS

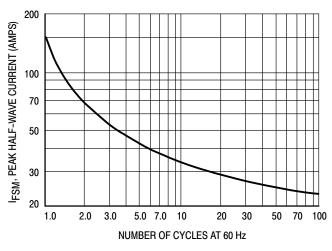

Characteristic	Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage (Note 2)	٧ _F				V
(i _F = 10 A, T _J = 125°C)		-	0.50	0.57	
$(i_F = 20 \text{ A}, T_J = 125^{\circ}\text{C})$		-	0.67	0.72	
$(i_F = 20 \text{ A}, T_J = 25^{\circ}\text{C})$		ı	0.71	0.84	
Instantaneous Reverse Current (Note 2)	i _R				mA
(Rated dc Voltage, T _J = 125°C)		_	10.4	15	
(Rated dc Voltage, T _J = 25°C)		-	0.02	0.1	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤ 2.0%.

ORDERING INFORMATION

Device Order Number	Package Type	Shipping [†]
MBR2045CTG	TO-220 (Pb-Free)	50 Units / Rail
MBRF2045CTG	TO-220FP (Pb-Free)	50 Units / Rail



100 $T_J = 150^{\circ}C$ 10 125°C I_R, REVERSE CURRENT (mA) 10.0 1.0 0.1 0.1 100°C 1.0 75°C 25°C 0.001 0 5.0 10 15 20 25 30 35 40 45 50 V_R, REVERSE VOLTAGE (VOLTS)

Figure 3. Typical Reverse Current

Figure 4. Maximum Reverse Current

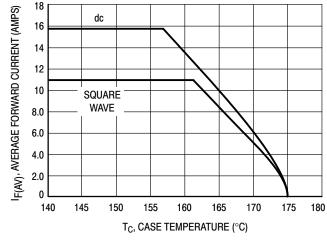
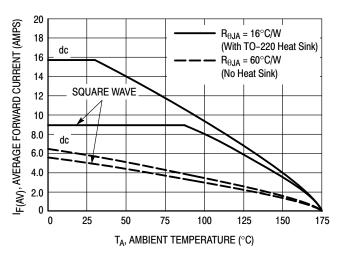



Figure 5. Maximum Surge Capability

Figure 6. Current Derating, Case, Per Leg

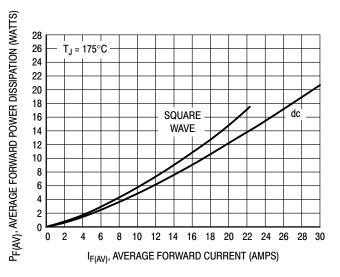


Figure 7. Current Derating, Ambient, Per Leg

Figure 8. Forward Power Dissipation

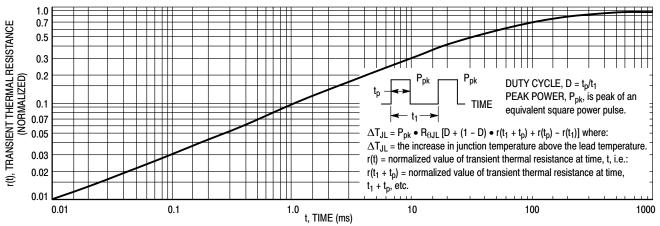


Figure 9. Thermal Response for MBR2045CT

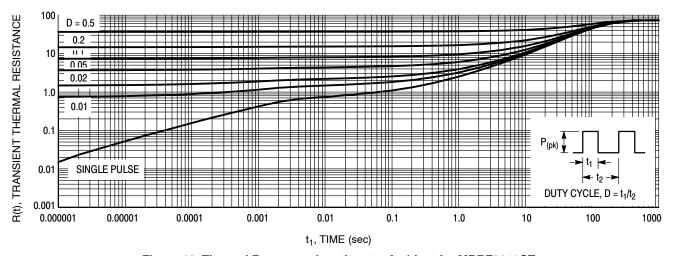


Figure 10. Thermal Response Junction-to-Ambient for MBRF2045CT

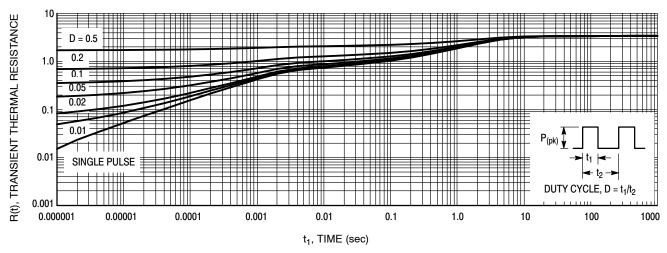


Figure 11. Thermal Response Junction-to-Case for MBRF2045CT

HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 12.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

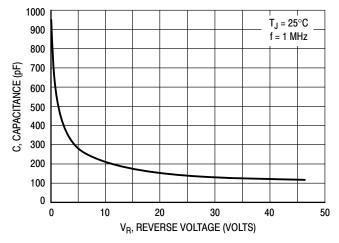


Figure 12. Typical Capacitance

+150 V, 10 mAdc

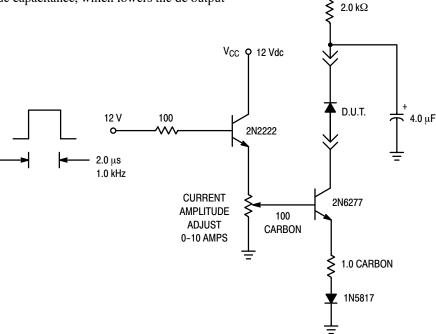
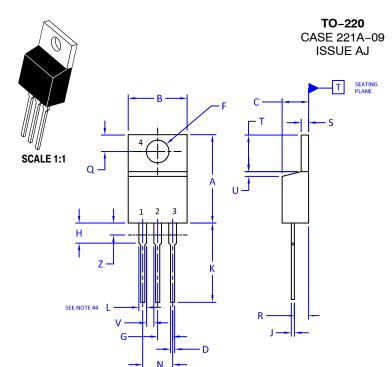



Figure 13. Test Circuit for dv/dt and Reverse Surge Current

MECHANICAL CASE OUTLINE

DATE 05 NOV 2019

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

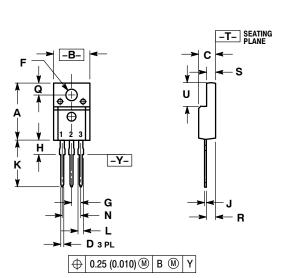
	INCHES		MILLIMI	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:	
PIN 1.	BASE	PIN 1.	BASE	PIN 1.	CATHODE	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	EMITTER	2.	ANODE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	COLLECTOR	3.	GATE	3.	GATE
4.	COLLECTOR	4.	EMITTER	4.	ANODE	4.	MAIN TERMINAL 2
STYLE 5:		STYLE 6:		STYLE 7:		STYLE 8:	
PIN 1.	GATE	PIN 1.	ANODE	PIN 1.	CATHODE	PIN 1.	CATHODE
2.	DRAIN	2.	CATHODE	2.	ANODE	2.	ANODE
3.	SOURCE	3.	ANODE	3.	CATHODE	3.	EXTERNAL TRIP/DELAY
4.	DRAIN	4.	CATHODE	4.	ANODE	4.	ANODE
STYLE 9:		STYLE 10:		STYLE 11	:	STYLE 12	:
PIN 1.	GATE	PIN 1.	GATE	PIN 1.	DRAIN	PIN 1.	MAIN TERMINAL 1
2.	COLLECTOR	2.	SOURCE	2.	SOURCE	2.	MAIN TERMINAL 2
3.	EMITTER	3.	DRAIN	3.	GATE	3.	GATE
4.	COLLECTOR	4.	SOURCE	4.	SOURCE	4.	NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220		PAGE 1 OF 1	

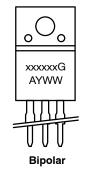
ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

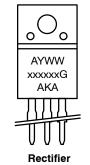
MECHANICAL CASE OUTLINE


SCALE 1:1

TO-220 FULLPAK CASE 221D-03 ISSUE K

DATE 27 FEB 2009


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH
- 3. 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03.


	INCHES		MILLIN	IETERS
DIM	MIN MAX		MIN	MAX
Α	0.617	0.635	15.67	16.12
В	0.392	0.419	9.96	10.63
C	0.177	0.193	4.50	4.90
D	0.024	0.039	0.60	1.00
F	0.116	0.129	2.95	3.28
G	0.100	BSC	2.54 BSC	
Н	0.118	0.135	3.00	3.43
J	0.018	0.025	0.45	0.63
K	0.503	0.541	12.78	13.73
L	0.048	0.058	1.23	1.47
N	0.200	BSC	5.08	BSC
Q	0.122	0.138	3.10	3.50
R	0.099	0.117	2.51	2.96
S	0.092	0.113	2.34	2.87
U	0.239	0.271	6.06	6.88

MARKING DIAGRAMS

xxxxxx	= Specific Device Code	Α	= Assembly Location
G	= Pb-Free Package	Υ	= Year
Α	= Assembly Location	WW	= Work Week
Υ	= Year	XXXXXX	= Device Code
WW	= Work Week	G	= Pb-Free Package
		AKA	= Polarity Designator

DOCUMENT NUMBER:	98ASB42514B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220 FULLPAK		PAGE 1 OF 1		

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor:

MBR2045CT MBRF2045CTG MBR2045CTG